
Best Practices & Tools for Optimizing Java

Tuning Java for Containers

Scott Seighman

Specialist Solutions Architect

sseighma@redhat.com

1

What we’ll discuss today ...

Agenda

2

▸ Best Practices & Observations

▸ Tuning

▸ Q&A

▸ Next Steps

What we won’t discuss ...

Agenda

3

▸ Anything code-related

･ Optimizing code, best practices, etc

4

Collection of best

practices and observations

for running, tuning and

monitoring Java in

containers and in the

enterprise

Best Practices &
Observations

Tuning

5

What are Your Performance Goals?

▸ Startup Time

▸ Peak Performance

▸ Time to First Response

▸ Predictable Performance

Tuning

6

What are Your Performance Goals?

▸ Start by setting performance goals

▸ Once you define the most important performance characteristics for your
system, you can figure out which parameters to change and how to change
them

▸ One important question to answer is whether you want to focus on
minimizing application response times or maximizing throughput

▸ Max pause and throughput are trade-offs, so you have to decide which is the
higher priority

▸ Application requirements largely determine whether it is preferable to have
more frequent collections of a shorter duration or less frequent collections
that last longer

Tuning

7

There’s no Silver Bullet ...

Monitoring & metrics

8

Configuration Environment Variables

Future Considerations

9

Java Command Line Flags

▸ In general, the JVM accepts two types of flags:
･ Boolean

･ -XX:+Flagname (enables), -XX:-Flagname (disables)
･ Parameter

･ -XX:Flagname=value

▸ Default flag values are based on factors of the JVM version, platform

･ https://chriswhocodes.com/vm-options-explorer.html

https://chriswhocodes.com/vm-options-explorer.html

Future Considerations

10

Java Command Line Flags

▸ -XX:+PrintFlagsFinal prints all options and their values used by the JVM

$ java -XX:+UnlockDiagnosticVMOptions -XX:+PrintFlagsFinal -version

[Global flags]
 int AVX3Threshold = 4096 {ARCH diagnostic} {default}
 bool AbortVMOnCompilationFailure = false {diagnostic} {default}
 ccstr AbortVMOnException = {diagnostic} {default}
 ccstr AbortVMOnExceptionMessage = {diagnostic} {default}
 bool AbortVMOnSafepointTimeout = false {diagnostic} {default}
 bool AbortVMOnVMOperationTimeout = false {diagnostic} {default}
 intx AbortVMOnVMOperationTimeoutDelay = 1000 {diagnostic} {default}
 int ActiveProcessorCount = -1 {product} {default}
...

Monitoring/Metrics

B
est P

ractices &
 O

bservations

11

Monitoring & Metrics

12

▸ The following are parts of the memory required by an active Java process:

･ Implementation of the JVM
･ The (C - manual) heap for data structures implementing the JVM
･ Stacks for all of the threads in the system (app + JVM)
･ Cached Java bytecode (for libraries and the application)
･ Static variables of all loaded classes (PermGen)

▸ These can often reflect the Xmx heap exceeded what is set by "-Xmx"

▸ The following blogs explain how the whole heap/stack adds up:

･ https://www.baeldung.com/native-memory-tracking-in-jvm
･ https://shipilev.net/jvm/anatomy-quarks/
･ https://plumbr.io/blog/memory-leaks/why-does-my-java-process-consume-

more-memory-than-xmx

Understanding Java Process Memory Allocation

https://www.baeldung.com/native-memory-tracking-in-jvm
https://shipilev.net/jvm/anatomy-quarks/
https://plumbr.io/blog/memory-leaks/why-does-my-java-process-consume-more-memory-than-xmx
https://plumbr.io/blog/memory-leaks/why-does-my-java-process-consume-more-memory-than-xmx

Monitoring & Metrics

13

▸ Raise Pod memory limits to reduce the alerts

▸ Do not raise heap allocation when raising Pod memory limits

▸ Do not allocate all Pod memory to the JVM Heap because there
are memory requests that the JVM makes outside of the heap
(code caches, data tables, fast data structures)

Best Practices

Monitoring & Metrics

14

$ docker run openjdk:11 java -XshowSettings:vm -version

VM settings:
 Max. Heap Size (Estimated): 1.92G
 Using VM: OpenJDK 64-Bit Server VM

openjdk version "11.0.7" 2020-04-14
OpenJDK Runtime Environment 18.9 (build 11.0.7+10)
OpenJDK 64-Bit Server VM 18.9 (build 11.0.7+10, mixed mode)

Determining & Setting Heap

Monitoring & Metrics

15

$ podman run openjdk:11 java -XX:MaxRAMPercentage=25 -XshowSettings:vm -version

VM settings:
 Max. Heap Size (Estimated): 1.92G
 Using VM: OpenJDK 64-Bit Server VM

openjdk version "11.0.7" 2020-04-14
OpenJDK Runtime Environment 18.9 (build 11.0.7+10)
OpenJDK 64-Bit Server VM 18.9 (build 11.0.7+10, mixed mode)

Determining & Setting Heap

Monitoring & metrics

16

$ docker run openjdk:11 java -XX:MaxRAMPercentage=50 -XshowSettings:vm -version

VM settings:
 Max. Heap Size (Estimated): 3.84G
 Using VM: OpenJDK 64-Bit Server VM

openjdk version "11.0.7" 2020-04-14
OpenJDK Runtime Environment 18.9 (build 11.0.7+10)
OpenJDK 64-Bit Server VM 18.9 (build 11.0.7+10, mixed mode)

Determining & Setting Heap

Monitoring & metrics

17

$ podman run -m 1GB openjdk:8 java -XshowSettings:vm -version

VM settings:
 Max. Heap Size (Estimated): 247.50M
 Ergonomics Machine Class: server
 Using VM: OpenJDK 64-Bit Server VM

openjdk version "1.8.0_252"
OpenJDK Runtime Environment (build 1.8.0_252-b09)
OpenJDK 64-Bit Server VM (build 25.252-b09, mixed mode)

Determining & Setting Heap

Monitoring & metrics

18

$ docker run openjdk:11 java -Xms512M -Xmx1G -XshowSettings:vm -version

VM settings:

 Min. Heap Size: 512.00M

 Max. Heap Size: 1.00G

 Using VM: OpenJDK 64-Bit Server VM

openjdk version "11.0.7" 2020-04-14

OpenJDK Runtime Environment 18.9 (build 11.0.7+10)

OpenJDK 64-Bit Server VM 18.9 (build 11.0.7+10, mixed mode)

Determining & Setting Heap

Monitoring & metrics

19

▸ Introduced in Java 10

▸ Backported to Java 8 (u191)

$ docker run openjdk:8 java -XX:+PrintFlagsFinal -version | grep ContainerSupport

 bool UseContainerSupport = true {product}

openjdk version "1.8.0_252"

OpenJDK Runtime Environment (build 1.8.0_252-b09)

OpenJDK 64-Bit Server VM (build 25.252-b09, mixed mode)

Other Useful Flags: -XX:+UseContainerSupport

Monitoring & Metrics

20

▸ NMT instruments and categorizes all internal VM allocations:

-XX:+UnlockDiagnosticVMOptions # Enables the feature

-XX:NativeMemoryTracking= # args can be off|detail|summary

-XX:+PrintNMTStatistics # Will print the JVM process statistics on exit

▸ Enabling NMT will result in a 5-10 percent JVM performance drop and memory usage
for NMT as it adds 2 machine words to all malloc memory as malloc header

▸ https://shipilev.net/jvm/anatomy-quarks/12-native-memory-tracking/

Native Memory Tracking (NMT)

https://shipilev.net/jvm/anatomy-quarks/12-native-memory-tracking/

Monitoring & Metrics

21

$ java -XX:+UnlockDiagnosticVMOptions -XX:NativeMemoryTracking=summary HelloFX

$ jcmd

20917 HelloFX
20968 jdk.jcmd/sun.tools.jcmd.JCmd

$ jcmd 20917 VM.native_memory summary

20917:

Native Memory Tracking:

Total: reserved=3489518KB, committed=220658KB

- Java Heap (reserved=2015232KB, committed=129024KB)
 (mmap: reserved=2015232KB, committed=129024KB)
 ...

Native Memory Tracking (NMT)

Monitoring & Metrics

22

jcmd

Description Command

List Java Processes jcmd

Heap Dumps jcmd <pid> GC.heap_dump

Heap Usage Histogram jcmd <pid> GC.class_histogram

Thread Dump jcmd <pid> Thread.print

List System Properties jcmd <pid> VM.system_properties

VM process Info jcmd <pid> VM.info

Monitoring & Metrics

23

To check physical memory, you can run the following command line:

$ oc adm top pod <pod_name>

And inside the pod:

sh-4.2$ cat /sys/fs/cgroup/memory/memory.stat

Other Useful Commands ...

Tuning

B
est P

ractices &
 O

bservations

24

Garbage Collection

Best Practices & Observations

25

Garbage Collector Primer

▸ When does the choice of a garbage collector matter?

▸ For some applications, the answer is never

▸ That is, the application can perform well in the presence of garbage collection
with pauses of modest frequency and duration

▸ However, this is not the case for a large class of applications, particularly those
with large amounts of data (multiple gigabytes), many threads, and high
transaction rates

Tuning

26

Garbage Collector Primer

▸ The Garbage collector (GC) is a memory management tool

▸ It achieves automatic memory management through the following
operations:

･ Allocating objects to a young generation and promoting aged objects into
an old generation

･ Finding live objects in the old generation through a concurrent (parallel)
marking phase

･ The VM triggers the marking phase when the total Java heap
occupancy exceeds the default threshold

･ Recovering free memory by compacting live objects through parallel
copying

Tuning

27

GC Summary

▸ Tuning garbage collection is not easy

▸ Tuning the GC may result in negligible pause times

･ Test the guidelines

▸ Enable GC logging to determine where it’s spending time

▸ G1 Collector may be appropriate for your workload

Your mileage may vary

Tuning

28

Other Tuning Options

Best Practices & Observations

29

Tuning

30

▸ Class-Data Sharing (CDS) was introduced to make the metadata of the
pre-loaded classes available in a shared file, which could be shared in
multiple instances of the JVM

▸ Application Class-Data Sharing (JEP 310) was introduced in Java 10+

▸ An extension of CDS that aims to allow pre-loading of metadata files,
bootstrap classes and other JDK and application classes

▸ CDS only works for classes loaded from modules or JAR files

▸ Now supported with Quarkus 1.6 (Hotspot VM)

Application Class Data-Sharing (CDS)

https://openjdk.java.net/jeps/310

Tuning

31

▸ Generate the file with the class metadata for your application.

$ java -XX:DumpLoadedClassList=app-classes.txt -jar your-app.jar

▸ Convert the file app-classes.txt to a file with the class metadata that can be
understood by the JVM:

$ java -Xshare:dump -XX:SharedClassListFile=app-classes.txt \
-XX:SharedArchiveFile=app-classes.jsa --class-path your-app.jar

$ java -XX:SharedArchiveFile=app-classes.jsa -jar your-app.jar

Application Class Data-Sharing (CDS)

Tuning

32

▸ Checkpoint/Restore In Userspace, or CRIU can freeze a running container (or an
individual application) and checkpoint its state to disk

▸ The data saved can be used to restore the application and run it exactly as it was
during the time of the freeze

▸ Using this functionality, application or container live migration, snapshots, remote
debugging, and many other things are now possible.

▸ Demo: https://asciinema.org/a/FsTbx9mZkzeuhCM2pFOr1tujM

Checkpointing (CRIU)

https://criu.org/Usage_scenarios
https://asciinema.org/a/FsTbx9mZkzeuhCM2pFOr1tujM

Tuning

33

▸ Tool that generates a custom Java runtime image that contains only the
platform modules that are required for a given application

▸ Runtime image acts exactly like the JRE but contains only the modules we
picked and the dependencies they need to function

▸ The concept of modular runtime images was introduced in JEP 220

▸ Requires Java 9+

jlink

https://openjdk.java.net/jeps/220

Tuning

34

$ jdeps Hello.class

HelloWorld.class -> java.base
 <unnamed> -> java.io java.base
 <unnamed> -> java.lang java.base

$ jlink --add-modules java.base --output customjre

jlink

Resources

35

Using jdeps

▸ jdeps is a Java Class Dependency Analyzer

▸ Java 8+ JDKs

▸ Analyzes the dependencies by class or package (default) level

▸ Not just for migrating to modularity

Resources

36

Using jdeps

View a list of dependencies of your application

$ jdeps <path to jar>

Shows dependencies at the class level, useful when refactoring code to avoid internal APIs

$ jdeps -v <path to jar>

Shows only dependencies belonging to a certain package

$ jdeps -v -p java.lang <path to jar>

Shows packages nested within java.lang

$ jdeps -v -e java.lang.* <path to jar>

Filters out dependencies by regex pattern

$ jdeps -v -filter java.lang.* <path to jar>

Show only dependencies on JDK internal classes

$ jdeps -jdkinternals <path to jar>

Tuning

37

▸ Disable JMX, you may or may not need it in your container:
spring.jmx.enabled=false

▸ Run the JVM with -noverify
･ Make certain the app dependencies match the JDK version used to build the application
･ Be aware disabling verification can lead to potential security compromises or crashes
･ When possible, use the latest dependency versions rather than -noverify

▸ Consider -XX:TieredStopAtLevel=1
･ Enabling this option will slow the JIT (for long-running apps) at the expense of faster

startup time ... so it's a tradeoff

▸ Use the container memory hints for Java 8 (prior to u181):
･ -XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap
･ Enabled with later updates of Java 8 (u181+), enabled by default with Java 11
･ You'll encounter some issues if your OS is using cgroups v2

Spring Tips

Tuning

38

Tiered Compilation

Credit: Tobias Hartman, Oracle

Tuning

39

▸ C1 compiler
･ Limited set of optimizations
･ Fast compilation
･ Small footprint

▸ C2 compiler
･ Aggressive optimistic optimizations
･ High resource demands
･ High-performance code

Tiered Compilation

Client VM

Server VM

Tiered
Compilation

Level 0

Interpreter

Level 1

C1 (no profiling)

Level 2

C1 (limited profiling)

Level 3

C1 (full profiling)

Level 4

C2

Tuning

40

$ java -jar target/spring-petclinic-2.3.1.BUILD-SNAPSHOT.jar

Started PetClinicApplication in 18.307 seconds (JVM running for 19.322)

$ java -XX:TieredStopAtLevel=1 -jar target/spring-petclinic-2.3.1.BUILD-SNAPSHOT.jar

Started PetClinicApplication in 9.489 seconds (JVM running for 10.125)

$ java -noverify -XX:TieredStopAtLevel=1 -jar \
target/spring-petclinic-2.3.1.BUILD-SNAPSHOT.jar

Started PetClinicApplication in 6.32 seconds (JVM running for 6.779)

Tiered Compilation

Tuning

41

▸ AOT compiler’s primary capability is to generate machine code for an application
without having to run the application, allowing a future run of the application to pick
the generated code

▸ Similarly, to C1 and C2, jaotc compiles Java bytecode to native code

▸ The primary motivation behind using AOT in Java is to bypass the interpreter

▸ It is generally faster for the machine to execute machine code than it is to execute
the code via the bytecode interpreter

▸ In many cases, it is a definite advantage, especially for code that needs to be
executed even just a few times

▸ AOT is a use case for short running programs, which finish execution before any JIT
compilation occurs

Ahead of Time Compiler (AOT)

Tuning

42

$ javac HelloWordAOT.java

$ java HelloWorldAOT

Hello, World

$ jaotc --compile-for-tiered --output libHelloWorldAOT.so --verbose HelloWorldAOT

Compiling libHelloWorldAOT.so…

...

$ java -XX:+UnlockExperimentalVMOptions -XX:AOTLibrary=./libHelloWorldAOT.so HelloWorldAOT

Hello, World

Ahead of Time Compiler (AOT)

Resources

43

JVM Config Options Tool
https://access.redhat.com/labsinfo/jvmconfig

▸ JVM config tool helps tune to avoid common problems

▸ Generates optimized settings for your application, based on our
experience with a wide range of synthetic and real-world
applications

▸ We recommend using this tool to provide a baseline JVM
configuration*

▸ Also explains why each option is generated and links back to the
Red Hat knowledge base for known issues and solutions

* Additional JVM tuning requires running the application under simulated load with garbage collection enabled and analyzing the garbage collection
logging maximum pause, overall throughput, and throughput bottlenecks

https://access.redhat.com/labsinfo/jvmconfig

Resources

44

JVM Config Options Tool
https://access.redhat.com/labsinfo/jvmconfig

https://access.redhat.com/labsinfo/jvmconfig

Optimizing Container
Builds

Future C
onsiderations

45

Optimizing Container Builds

46

Container Image Size

Repository Tag Size

openjdk 8 510 MB

openjdk 8-jdk-slim 285 MB

openjdk 8-jre 265 MB

openjdk 8-jre-slim 184 MB

Optimizing Container Builds

47

stats

$ docker stats
ID NAME CPU % MEM USAGE / LIMIT MEM % NET IO BLOCK IO PIDS
1d60aed50b65 brave_roentgen 7.38% 400.5MB / 24.85GB 1.61% -- / -- -- / -- 64

...

Optimizing Container Builds

48

image history

$ podman image history spring-boot-podman
ID CREATED CREATED BY SIZE
44bf8274d128 5 weeks ago /bin/sh -c #(nop) ENTRYPOINT ["java","-cp"...
16.74MB
f5de33dc9079 5 weeks ago /bin/sh -c #(nop) COPY dir:fbf8b3938d1d0ee... 0B
<missing> 5 weeks ago /bin/sh -c #(nop) COPY dir:60ee44dab014f44... 0B
<missing> 5 weeks ago /bin/sh -c #(nop) COPY dir:923792c91b1ae43... 0B
<missing> 5 weeks ago /bin/sh -c #(nop) ARG DEPENDENCY=target/de... 0B
<missing> 5 weeks ago /bin/sh -c #(nop) VOLUME /tmp 0B
<missing> 7 weeks ago /bin/sh -c #(nop) CMD ["jshell"] 0B
<missing> 7 weeks ago /bin/sh -c set -eux; dpkgArch="$(dpkg --pr...
323.2MB
<missing> 7 weeks ago /bin/sh -c #(nop) ENV JAVA_URL_VERSION=11.... 0B
<missing> 7 weeks ago /bin/sh -c #(nop) ENV JAVA_BASE_URL=https:... 0B
<missing> 7 weeks ago /bin/sh -c #(nop) ENV JAVA_VERSION=11.0.7 0B
<missing> 7 weeks ago /bin/sh -c { echo '#/bin/sh'; echo 'echo "...
3.584kB

...

Monitoring & metrics

49

▸ Command-line monitoring for containers

Other Useful Commands … ctop (docker)

▸ https://ctop.sh/

https://ctop.sh/

Optimizing Container Builds

50

dive

▸ A tool for exploring a
container image, layer
contents, and
discovering ways to
shrink the size of your
Docker/OCI image

https://github.com/wagoodman/dive

https://github.com/wagoodman/dive

Future Considerations

51

gnomon

$ podman build . | gnomon
 0.0076s STEP 1: FROM registry.access.redhat.com/ubi8/ubi-minimal
 0.5017s STEP 2: RUN microdnf install java-11-openjdk --nodocs
 1.1076s STEP 2: RUN microdnf install java-11-openjdk --nodocsnf.conf":
 2.0081s Downloading metadata...
 2.3106s Downloading metadata...
 1.3181s Downloading metadata...
 0.0001s Package Repository Size
 0.0001s Installing:
 0.0000s abattis-cantarell-fonts-0.0.25-4.el8.noarch ubi-8-appstream 159.0 kB
 0.0000s acl-2.2.53-1.el8.x86_64 ubi-8-baseos 83.0 kB

 ...
 0.0489s STEP 8: COMMIT
 0.3988s --> cb2d530c0f9
 0.0229s cb2d530c0f9b680f450c8aadcd098a48881d0ab02acb43d7d9472320a73f3427
 0.0004s
 Total 63.4261s

https://github.com/paypal/gnomon

https://github.com/paypal/gnomon

Resources

B
est P

ractices &
 O

bservations

52

Resources

53

Additional Resources
Links and such ...

▸ Java garbage collection long pause times
･ https://access.redhat.com/solutions/19932

▸ G1 Collector Tuning
･ https://access.redhat.com/solutions/2162391

▸ How do I analyze Java garbage collection logging?
･ https://access.redhat.com/solutions/23735

▸ Improving OpenJDK Garbage Collection Performance
･ https://access.redhat.com/articles/1192773

https://access.redhat.com/solutions/19932
https://access.redhat.com/solutions/2162391
https://access.redhat.com/solutions/23735
https://access.redhat.com/articles/1192773

Resources

54

Additional Resources
Links and such ...

▸ How do I enable Java garbage collection logging?
･ https://access.redhat.com/solutions/18656

▸ How do I analyze Java garbage collection logging?
･ https://access.redhat.com/solutions/23735

▸ VM Options Explorer
･ https://chriswhocodes.com/vm-options-explorer.html

･ https://chriswhocodes.com/hotspot_option_differences.html

▸ Java Command Line Inspector
･ https://chriswhocodes.com/vm-options-explorer.html

https://access.redhat.com/solutions/18656
https://access.redhat.com/solutions/23735
https://chriswhocodes.com/vm-options-explorer.html
https://chriswhocodes.com/hotspot_option_differences.html
https://chriswhocodes.com/vm-options-explorer.html

Resources

55

Additional Resources
Links and such ...

Resources

56

Action ...

▸ We can help you assess your current Java environment and provide
guidance on how you can achieve your performance goals

▸ Whether you want to focus on minimizing application response times,
maximizing throughput or improving startup performance

▸ Schedule an in-depth session to discuss Java performance
optimization and best practices

57

Q & A

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

58

